A spatial autocorrelation for modelling the spread of coronavirus infections Full article
Journal |
SHS Web of Conferences
, E-ISSN: 2261-2424 |
||||
---|---|---|---|---|---|
Output data | Year: 2021, Volume: 106, Article number : 01001, Pages count : 7 DOI: 10.1051/shsconf/202110601001 | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Российский фонд фундаментальных исследований | 20-04-60188 |
Abstract:
Spatial autocorrelation methods are used to study spatial disproportions in the socio-economic development of territories. The most common research methods are the analysis of Moran local indices, Moran global index, Getis-Ord hot spots. In this study, we used spatial autocorrelation methods to estimate COVID-19 distribution patterns. As a result of the study, we identified the formed growth poles, the epicenters of the spread of infection (St. Petersburg, Sverdlovsk and Nizhny Novgorod regions) and only emerging ones. The practical application of this methodological approach allowed us to predict further spatial directions of the spread of coronavirus infection (Vladimir, Kaluga, Smolensk, Tula, Tver, Yaroslavl, Ryazan and Leningrad regions).
Cite:
Naumov I.
, Krasnykh S.
, Otmakhova Y.
A spatial autocorrelation for modelling the spread of coronavirus infections
SHS Web of Conferences. 2021. V.106. 01001 :1-7. DOI: 10.1051/shsconf/202110601001 OpenAlex
A spatial autocorrelation for modelling the spread of coronavirus infections
SHS Web of Conferences. 2021. V.106. 01001 :1-7. DOI: 10.1051/shsconf/202110601001 OpenAlex
Identifiers:
OpenAlex: | W3162625511 |
Citing:
DB | Citing |
---|---|
OpenAlex | 1 |